Computing All Faces of the Minkowski Sum of V-Polytopes

نویسندگان

  • K. Fukuda
  • Ch. Weibel
چکیده

We consider the problem of listing faces of the Minkowski sum of several V-polytopes in R. An algorithm for listing all faces of dimension up to j is presented, for any given 0 ≤ j ≤ d − 1. It runs in time polynomial in the sizes of input and output.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing faces up to k dimensions of a Minkowski Sum of Polytopes

We consider the problem of listing faces of the Minkowski sum of several V-polytopes in R. An algorithm for listing all faces of dimension up to j is presented, for any given 0 ≤ j ≤ d − 1. It runs in time polynomial in the sizes of input and output.

متن کامل

Tight lower bounds on the number of faces of the Minkowski sum of convex polytopes via the Cayley trick

Consider a set of r convex d-polytopes P1, P2, . . . , Pr, where d ≥ 3 and r ≥ 2, and let ni be the number of vertices of Pi, 1 ≤ i ≤ r. It has been shown by Fukuda and Weibel [4] that the number of k-faces of the Minkowski sum, P1 + P2 + · · · + Pr, is bounded from above by Φk+r(n1, n2, . . . , nr), where Φl(n1, n2, . . . , nr) = ∑ 1≤si≤ni s1+...+sr=l ∏ r i=1 ( ni si ) , l ≥ r. Fukuda and Weib...

متن کامل

Maximal f-vectors of Minkowski sums of large numbers of polytopes

It is known that in the Minkowski sum of r polytopes in dimension d, with r < d, the number of vertices of the sum can potentially be as high as the product of the number of vertices in each summand [2]. However, the number of vertices for sums of more polytopes was unknown so far. In this paper, we study sums of polytopes in general orientations, and show a linear relation between the number o...

متن کامل

The maximum number of faces of the Minkowski sum of two convex polytopes

We derive tight bounds for the maximum number of k-faces, 0 ≤ k ≤ d − 1, of the Minkowski sum, P1 ⊕ P2, of two ddimensional convex polytopes P1 and P2, as a function of the number of vertices of the polytopes. For even dimensions d ≥ 2, the maximum values are attained when P1 and P2 are cyclic d-polytopes with disjoint vertex sets. For odd dimensions d ≥ 3, the maximum values are attained when ...

متن کامل

Relative Stanley–reisner Theory and Lower Bound Theorems for Minkowski Sums

This note complements an earlier paper of the author by providing a lower bound theorem for Minkowski sums of polytopes. In [AS16], we showed an analogue of McMullen’s Upper Bound theorem for Minkowski sums of polytopes, estimating the maximal complexity of such a sum of polytopes. A common question in reaction to that research was the question for an analogue for the Barnette’s Lower Bound The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005